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Final Report

This report summarizes our activities under the Air Force Office of Scientific Research (AFOSR)
Grant No. F49620-98-1-0400 entitled “Theoretical and Experimental Studies of Chaotic Dynamics
with Defense Applications.” This was an AFOSR Presidential Early Career Award for Scientists and
Engineers (PECASE) in 1997. The duration of the award was from 4/1/1998 to 6/30/2003. The report
is divided into the following Sections:
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1 Objectives
1. Chaotic scattering and applications to optical microlasing cavities;
2. Inducing chaos in electronic circuits;
3. Signal enhancement using stochastic resonance for antijamming;

4. Dynamics of semiconductor lasers and communicating with chaos.

2 Description of Achievements of Objectives

All four Objectives have been achieved. Results were published in a number of refereed-journal papers.

2.1 Chaotic scattering and applications to optical microlasing cavities

The fundamental dynamics of chaotic scattering in two- and three-degrees of Hamiltonian systems,
which include topological bifurcations and the effect of weak dissipation, were investigated. Guided
by the theory of chaotic scattering, ray tracing in optical microlasing cavities was carried out, yielding
an understanding of how geometrical deformations affect the @-value and directionality of the lasing
. cavity. The effect of quantum-mechanical tunneling associated with nonhyperbolic chaotic scattering
in semiconductor nanostructure (quantum dots) was disscovered and explained using a semiclassical
theory.
Relevant publications are

e Y.-C. Lai, “Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimen-
sion,” Physical Review E (Rapid Communications) 60, R6283-R6286 (1999).

e Y.-C. Lai, K. Zyczkowski, and C. Grebogi, “Universal behavior in the parameter evolution of
chaotic saddles,” Physical Review E 59, 5261-5265 (1999).

e K. Zyczkowski and Y.-C. Lai, “Devil-staircase behavior of dynamical invariants in chaotic scat-
tering,” Physica D 142, 197-216 (2000).

e Y.-C. Lai, A. P. S. de Moura, and C. Grebogi, “Topology of high-dimensional chaotic scattering,”
Physical Review E 62, 6421-6428 (2000).

e A. E. Motter and Y.-C. Lai, “Dissipative chaotic scattering,” Physical Review E (Rapid Commu-
nications) 65, 015205(1-4) (2002)

e A. Motter and Y.-C. Lai, “Dimension scaling of topological bifurcations in chaotic scattering,”
Physical Review E (Rapid Communications) 65, 065201(1-4) (2002).

e Z. Liu and Y.-C. Lai, “Chaotic scattering in deformed optlcal microlasing cavities,” Physical
Review E 65, 046204(1 -5) (2002).

¢ A.P.S. de Moura, Y.-C. Lai, R. Akis, J. Bird, and D. K. Ferry, “Tunneling and nonhyperbolicity
in quantum dots,” Physical Remew Letters 88, 236804(1-4) (2002).




2.2 Inducing chaos in electronic circuits

This topic was suggested by Drs. Mike Harrison and Dave Dietz at AFRL, Kirtland AFB. During the
project period, experimental electronic circuits including the Chua’s circuit, the Rossler circuit, and
the coupled Réssler circuits were set up, tested, and utilized to investigate problems on fundamental
properties of chaos and induction of chaos in these circuits. Specific achievements are: (1) experimental
observation of chaotic lag synchronization, (2) experimental observation and characterization of super-
persistent chaotic transients and scaling law, (3) theoretical and numerical schemes of inducing chaos by
using resonant perturbations, (4) scaling theory of noise-induced chaos and experimental verification,
and (5) noisy scaling of statistical averages in chaotic systems and experimental verification.
These achievements were summarized in the following papers and report:

‘e S. Taherion and Y.-C. Lai, “Observability of lag synchronization in coupled chaotic oscillators,”
Physical Review E (Rapid Communications) 59, R6247-R6250 (1999).

e S. Taherion and Y.-C. Lai, “Experimental observation of lag synchronization in coupled chaotic
systems,” International Journal of Bifurcation and Chaos 10, 2587-2594 (2000).

e L.Zhu, A. Raghﬁ, and Y .-C. Lai, “Experimental observation of superpersistent chaotic transients,”
Physical Review Letters 86, 4017-4020 (2001). :

e L. Zhu and Y.-C. Lai, “Experimental observation of generalized time-lagged chaotic synchroniza-
tion,” Physical Review E (Rapid Communications) 64, 045205(1-4) (2001).

e Y.-C. Lai, Z. Liu, and A. P. S. de Moura, “Inducing chaos in nonlinear oscillators by resonant
perturbations,” Technical Report submitted to AFOSR (Dr. Arje Nachman) and AFRL (Dr.
Mike Harrison), February 2002.

e Z.Liu, Y.-C. Lai, L. Billings, and I. B. Schwartz, “Transition to chaos in continuous-time random
dynamical systems,” Physical Review Letters 88, 124101(1-4) (2002).

e Y.-C.Lai, Z. Liu, G. Wei, and C.-H. Lai, “Shadowability of statistical averages in chaotic systems,”
Physical Review Letters 89, 184101(1-4) (2002).

e B. Xu, Y-C. Lai, L. Zhu, and Y. Do, “Experimental characterization of transition to chaos in the
presence of noise,” Physical Review Letters 90, 164101 (1-4) (2003).

) Y.—C.:Lai, Z. Liu, L. Billings, and I. B. Schwartz, “Noise-induced unstable dimension variability
and transition to chaos in random dynamical systems,” Physical Review E 67, 026210(1-17) (2003).

e L. Zhu, Y.-C. Lai, F. Hoppensteadt, and E. M. Bollt, “Numerical and experimental investigation
of the effect of filtering on chaotic symbolic dynamics,” Chaos 13, 410-419 (2003).

2.3 Signal enhancement using stochastic resonance for antijamming

The Objective was to test and idea of using stochastic resonance to suppress jamming. The idea was
conceived by Dr. Arje Nachman at AFOSR. During the project period, a scheme based on excitable
dynamical systems was proposed and numerically tested for enhancing both periodic and aperiodic
signals under jamming by using stochastic resonance. The aperiodic signals tested include AM, FM,
and chaotic signals. As a related problem, theoretical, numerical, and experimental studies of coherence
resonance (enhancement of temporal regularity by noise) were carried out. Enhancement of chemical
reaction in chaotic flows by noise was discovered and explained.
Publications are
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e Z.Liuand Y.-C. Lai, “Coherence resonance in coupled chaotic oscillators,” Physical Review Letters
86, 4737-4740 (2001).

e Y.-C. Lai and Z. Liu, “Noise-enhanced temporal regularity in coupled chaotic oscillators,” Physical
Review E 64, 066202(1-9) (2001).

® Z. Liu, Y.-C. Lai, and A. Nachman, “Enhancement of noisy signals by stochastic resonance,”
Physics Letters A 297, 75-80 (2002).

e L. Zhu, Y.-C. Lai, Z. Liu, and A. Raghu, “Can noise make non-bursting chaotic systems more
regular?” Physical Review E (Rapid Communications) 66, 015204(1-4) (2002).

e Z. Liu, Y.-C. Lai, and J. M. Lopez, “Noise-induced enhancement of chemical reactions in chaotic
flows,” Chaos 12, 417-425 (2002). [This work was featured in AIP (American Institute of Physics)
News Updates in July 2002. It was also named an outstanding paper for the journal CHAOS in
the AIP’s 2002 Annual Report.)

¢ Z. Liu, Y.-C. Lai, and A. Nachman, “Enhancement of detectability of noisy signals by stochastic
resonance in arrays,” International Journal of Bifurcation and Chaos, accepted.

e Y.-C. Lai, Z. Liu, and A. Nachman, “Aperiodic stochastic resonance and phase synchronization,”
submitted to Physics Letters A.

e Y.-C. Lai, Z. Liu, A. Nachman, and L. Zhu, “Suppression of jamming in excitable systems by
aperiodic stochastic resonance,” submitted to International Journal of Bifurcation and Chaos.

2.4 Dynamics of semiconductor lasers and communicating with chaos

Research on semiconductor lasers was done in close collaboration with Air Force scientists (Drs. A.
Gavrielides and V. Kovanis) at the Nonlinear Optics Center, AFRL, Kirtland AFB. Problems investi-
gated included the dynamical origin of low-frequency fluctuations in semiconductor lasers, fundamental
regular dynamical invariant sets associated with these fluctuations, analysis of a reduced model for
understanding the fluctuations, complicated basin structure in semiconductor lasers, and a possible
scheme to suppress the low-frequency fluctuations. In communicating with chaos, the issues of high-
dimensional symbolic dynamics, transient chaos, determination of generating partition using unstable
periodic orbits, and data analysis using symbolic dynamics were explored.
The results are summarized in the following publications:

¢ Y.-C. Lai, E. Bollt, and C. Grebogi, “Communicating with chaos using two-dimensional symbolic
dynamics,” Physics Letters A 255, 75-81 (1999).

e Y.-C. Lai “Encoding digital information using transient chaos,” International Journal of Bifurca-
tion and Chaos 10, 787-795 (2000).

e R. L. Davidchack, Y.-C. Lai, E. Bollt, and M. Dhamala, “Estimating the generating partition of
chaotic systems by unstable periodic orbits,” Physical Review E 61, 1353-1356 (2000).

e R. L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low-frequency
fluctuations in external cavity semiconductor lasers,” Physics Letters A 267 , 350-356 (2000).

e R. L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Chaotic transitions and low-
frequency fluctuations in semiconductor lasers with optical feedback,” Physica D 145, 130-143
(2000).
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e E. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “Validity of threshold-crossing analysis of
symbolic dynamics from chaotic time series,” Physical Review Letters 85, 3524-3527 (2000).

e E. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “What symbolic dynamics do we get with
a misplaced partition? - On the validity of threshold crossings analysis of chaotic time series,”
Physica D 154, 259-286 (2001).

e R.L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Regular dynamics of low-frequency
fluctuations in semiconductor lasers with optical feedback,” Physical Review E 63, 056206(1-6)
(2001).

e A. Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Low-frequency fluctuations in external-
cavity semiconductor lasers: understanding based on a reduced Lang-Kobayashi model,” Journal
of Optics B: Quantum and Semiclassical Optics 3, 242-250 (2001).

e A. Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Complicated basins in coupled external-
cavity semiconductor lasers,” Physics Letters A 314, 44-50 (2003).

e A.Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Amplitude modulation in coupled external-
cavity semiconductor lasers,” Physics Letters A, in press.

3 Accomplishments and New Findings (Selected)

3.1 Objective 1: Chaotic scattering and applications to optical microlasing cavities
3.1.1 Crisis in chaotic scattering

A crisis in chaotic scattering is characterized by the merging of two or more nonattracting chaotic
saddles. The fractal dimension of the resulting chaotic saddle increases through the crisis. We formulated
a rigorous analysis for the behavior of dynamical invariants associated with chaotic scattering by utilizing
a representative model system that captures the essential dynamical features of crises. Our analysis
indicated that the fractal dimension and other dynamical invariants are a devil-staircase type of functions
of the system parameter. The results can also serve as a rigorous base for similar devil-staircase behaviors
observed in the parametric evolution of chaotic saddles of general dissipative dynamical systems and
those arising in communicating with chaos.

e Y.-C. Lai, K. Zyczkowski, and C. Grebogi, “Universal behavior in the parameter evolution of
chaotic saddles,” Physical Review E 59, 5261-5265 (1999).

e K. Zyczkowski and Y.-C. Lai, “Devil-staircase behavior of dynamical invariants in chaotic scat-
tering,” Physica D 142, 197-216 (2000).

3.1.2 Topology of high-dimensional chaotic scattering

A fundamental problem in the study of chaotic scattering is to understand how the scattering character-
istics change as a system parameter of physical interest changes. In this regard, most previous research
had been on two-degree-of-freedom Hamiltonian systems or on three-degree-of-freedom Hamiltonian
systems but with hard-wall potentials. We investigated chaotic scattering in three-degree-of-freedom
Hamiltonian systems consisting of physically realistic soft potentials. Another motivation came from
the desire to understand the scattering dynamics of particles by molecules in three-dimensional physical
space and the ray dynamics in optical microlasing cavities. Our findings were: (1) the topology of the
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chaotic scattering dynamics can undergo a sudden change, called metamorphoses, as a system parame-
ter (e.g., energy) changes continuously, (2) at a topological metamorphosis, the behavior of the fractal
dimension of the chaotic saddle can change characteristically, and (3) chaotic scattering can occur in
energy regimes where it is not possible in the corresponding planar scattering system.

¢ Y.-C. Lai, A. P. S. de Moura, and C. Grebogi, “Topology of high-dimensional chaotic scattering,”
Physical Review E 62, 6421-6428 (2000). '

3.1.3 Abrupt bifurcation to chaotic scattering

One of the major routes to chaotic scattering is abrupt bifurcation by which a nonattracting chaotic
saddle is created, as a system parameter changes through a critical value. In a previously investigated
case, however, the fractal dimension of the set of singularities in the scattering function changes con-
tinuously through the bifurcation. In this work, a new type of abrupt bifurcation to chaotic scattering
was identified and analyzed, by which the physically relevant dimension changes discontinuously at the

bifurcation. The bifurcation was illustrated by using a class of open Hamiltonian systems consisting of
Morse potential hills.

e Y.-C. Lai, “Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimen-
sion,” Physical Review E (Rapid Communications) 60, R6283-R6286 (1999).

3.1.4 Chaotic scattering in optical microlasing cavities

Optical processes in microcavities are a subject of recent interest due to their relevance to designing
novel microlasers, to nonlinear optics, and to atomic physics. One appealing feature of these dielectric
cavities is that they can support high-Q whispering-gallery (WG) modes of operation which is due,
clasically, to total internal reflection of the trapped light. However, microlasers require a high degree of
directionarity of the emitted light to operate, which can be achieved by deforming the shape of the cavity
from the ideal spherical or cylindrical geometry. Such deformations of cavities can lead to the breakdown
of total internal reflections and, consequently, to Q-spoiling of the WG modes. The traditional wave
perturbation theory cannot be employed to treat the problem of Q-spoiling because the deformations
can be quite large. Existing works had demonstrated that many features of the Q-spoiling phenomenon
can actually be understood by taking the classical approach of ray tracing, the dynamics of which is
typically chaotic.

We studied the common class of dielectric optical microlasing cavities with quadrupolar deformations
and addressed the question of the maximally allowed amount of deformation for both high-Q operation
and a high degree of directionality of light emission. Our approach was to compute the probability for
light rays to be trapped in the cavity by examining chaotic scattering dynamics in the classical phase
space. We developed a dynamical criterion for high-Q operation and introduced a measure to quantify
the directionality of the light emission. Our results suggested that high-Q and directionality can be
achieved simultaneously in a wide range of the deformation parameter.

® Z. Liu and Y.-C. Lai, “Chaotic scattering in deformed optical microlasing cavities,” Physical
Review E 65, 046204(1-5) (2002).

3.1.5 Effect of weak dissipation on chaotic scattering

In chaotic scattering, most existing works had been on Hamiltonian or conservative systems. In a
realistic situation, a small amount of dissipation can be expected. We showed that weak dissipation can
have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically



important particle-decay law is altered, no matter how small the amount of dissipation is. The previous
result about the unity of the fractal dimension of the set of singularities in scattering functions, a major
claim about nonhyperbolic chaotic scattering, may then not be observable.

e A. E. Motter and Y.-C. Lai, “Dissipative chaotic scattering,” Physical Review E (Rapid Commu-
nications) 65, 015205(1-4) (2002).

3.1.6 Tunneling and nonhyperbolicity in quantum dots

Electronic transport in semiconductor nanostructures is a frontier problem in condensed matter physics
and nonlinear science. In sub-micron scales, quantum interference plays a fundamental role, giving
rise to such phenomena as conductance fluctuations and the Aharonov-Bohm effect. A particularly
important class of nanostructures is represented by the 2-Dimensional Electron Gas (2DEG) quantum
dots. In these systems, the carriers (typically electrons) are restricted to move on a plane that lies near
the interface between two different semiconductors. Applying voltage to contact gates deposited above
the junction allows for the construction of sub-micron-sized 2D cavities in which electrons are scattered.
Furthermore, in 2DEGs both the mean free path and the coherence lengths are typically much larger
than the cavity length at milli-Kelvin temperatures. For low currents, the transport characteristics of
the quantum dot (such as the conductance) are determined by the approximately ballistic and coherent
motion of single electrons in the cavity. Semiclassical theory can thus be applied, and one can expect
that the classical electron dynamics, e.g., whether the scattering is regular or chaotic, will play a major
role in the transport. A popular approach had been to assume that the underlying classical scattering
dynamics is completely chaotic (or hyperbolic), and then used the Random Matrix Theory (RMT), which
predicts universal conductance fluctuations with a Lorentzian correlation function, as a parameter of
the system is varied, such as an external magnetic field or the gate voltage. A fundamental difficulty
with the RMT approach is that typical systems have a nonhyperbolic dynamics, with regions of chaotic
scattering coexisting with non-escaping Kolmogorov-Arnold-Moser (KAM) islands surrounding stable
orbits in the phase space.

Our belief was that many major features in electronic transport in realistic quantum dots are not
explainable by the usual semiclassical approach, due to the contributions of the quantum-mechanical
tunneling of the electrons through the KAM islands. We showed that dynamical tunneling gives rise to
a set of resonances characterized by two quantum numbers, which leads to conductance oscillations and
concentration of wave functions near stable and unstable periodic orbits. Experimental results agree
very well with our theoretical predictions, indicating that tunneling has to be taken into account to
understand the physics of transport in generic nanostructures.

e A.P.S. de Moura, Y.-C. Lai, R. Akis, J. Bird, and D. K. Ferry, “Tunneling and nonhyperbolicity
in quantum dots,” Physical Review Letters 88, 236804(1-4) (2002).

3.2 Objective 2: Inducing chaos in electronic circuits

© 38.2.1 Inducing chaos in nonlinear oscillators by resonant perturbations

In 1998, Drs. Mike Harrison and Dave Dietz at the Air Force Research Laboratory (AFRL) in Kirtland
Air Force Base suggested the following problem: Given a nonlinear oscillator such as an electronic circuit
that operates in a regular and stable state, would it be possible to deliver small external perturbations
to drive the oscillator into a chaotic state? The problem was motivated by Air Force’s interest to
defeat electronic tracking and guidance systems such as those found in surface-to-air missiles. If chaotic
dynamics can be induced in some important parts of the tracking and guidance systems by using external
excitations such as microwave oscillations, it is possible that the missile carrying these systems will fail




to reach its target. This is so because the normal operational state of the electronic circuitry in such a
system is typically stable, while in a chaotic state, the system will become ”confused” and therefore fail
in its intended mission. 'A potential advantage to use chaos is that the absorbed energy necessary to
induce chaotic behavior can be much less than that required to simply "overpower” the same electronics.

We deveéloped a theoretical strategy, based on the principle of resonant perturbations, to achieve
the goal of inducing chaos. The general assumption is that either such an oscillator is incapable of
generating any chaotic behavior, or it is far away from any chaotic regime in the parameter space. Our
idea was to deliver judiciously chosen, small perturbations to drive the system into higher and higher
resonant states in relatively short time. The perturbations can be a sinusoidal microwave field with
time-varying frequency and phase, and how they vary is determined by a real-time measured signal
emitted from the oscillator. That is, the perturbations can be computed based on a measured time
series from the oscillator. We demonstrated numerically that the idea can indeed work, and we are

hopeful that it can be implemented in laboratory experiments and eventually be applied to real-world
situations. -

e Y.-C. Lai, Z. Liu, and A. P. S. de Moura, “Inducing chaos in nonlinear oscillators by resonant

perturbations,” Technical Report submitted to AFOSR (Dr. Arje Nachman) and AFRL (Dr.
Mike Harrison), February 2002.

3.2.2 Chaotic lag synchronization in electronic circuits

Lag synchronization means that the dynamical variables of two coupled, nonidentical chaotic oscillators
can be synchronized but with a time delay relative to each other. We investigated experimentally,
numerically, and theoretically to what extent lag synchronization can be observed in physical systems
where noise is inevitable. Our measurements and analyses suggested that lag synchronization is typically
destroyed when noise is comparable to the amount of average system mismatch. At small noise levels,
lag synchronization occurs in an intermittent fashion. We provided a detailed experimental analysis
and a theoretical explanation for the observed intermittent behavior.

e S. Taherion and Y.-C. Lai, “Observability of lag synchronization in coupled chaotic oscillatbrs,”
Physical Review E (Rapid Communications) 59, R6247-R6250 (1999).

o S. Taherion and Y.-C. Lai, “Experimental observation of lag synchronization in coupled chaotic
systems,” International Journal of Bifurcation and Chaos 10, 2587-2594 (2000).

® L. Zhu and Y.-C. Lai, “Experimental observation of generalized time-lagged chaotic synchroniza-
tion,” Physical Review E (Rapid Communications) 64, 045205(1-4) (2001).

3.2.3 Experimental observation of superpersistent chaotic transients

Transient chaos is ubiquitous in nonlinear dynamical systems. In such a case, dynamical variables
of the system behave chaotically for a finite amount of time before settling into a final state that is
usually not chaotic. A common situation for transient chaos to arise is where the system undergoes a
crisis at which a chaotic attractor collides with the basin boundary separating it and another coexisting
attractor. After the crisis, the chaotic attractor is destroyed and converted into a nonattracting chaotic
saddle. Dynamically, a trajectory then wanders in the vicinity of the chaotic saddle for a period of time
before approaching asymptotically the other attractor. Chaotic transients of this sort are not super
persistent in the sense that their average lifetimes scale with the system parameter only algebraically.
There exists, however, a distinct class of chaotic transients that are superpersistent in the sense
that their transient lifetimes scale with a parameter in an exponentially manner, with the exponent
approaching asymptotically infinity as the parameter approaches a critical value. Physically, this means

8




that the transient lifetime is significantly longer than those associated with “regular” chaotic transients
characterized by an algebraic scaling law. Because of this superpersistent nature of transient chaos, the
asymptotic attractor of the system is practically unobservable.

While regular chaotic transients had been observed in experiments, there had been no direct exper-
imental verification of superpersistent chaotic transients. Because of the extremely long nature of these
transients, it is highly nontrivial to observe and quantify them in laboratory experiments. We made the
first experimental observation of superpersistent chaotic transients by investigating the effect of noise
on phase synchronization in coupled chaotic electronic circuits and obtained the scaling relation that is
characteristic of those extremely long chaotic transients.

e L.Zhu, A. Raghu, and Y .-C. Lai, “Experimental observation of superpersistent chaotic transients,”
Physical Review Letters 86, 4017-4020 (2001).

3.2.4 Experimental investigation of effect of filtering on chaotic symbolic dynamics

‘Experimentally measured signals are either naturally or intentionally filtered, the former can be at-
tributed to the limitation of the measuring instruments while the latter is due to the necessity to
remove undesirable frequency components for signal processing. Another area to which filtering is rel-
evant is transmission of chaotic signals through a physical medium. For instance, in a communication
application, a chaotic waveform is transmitted through a channel. Because of the finite bandwidth of
the channel, the transmission is equivalent to a filtering process. Most existing works on the effect of
~ filtering on chaotic signals had dealt with how filtering changes the fractal dimensions, with well-known
results such as the dimension increase caused by filtering. The focus of our investigation was on the
symbolic-dynamics aspect of chaotic signals. Suppose a dynamical system generates a chaotic signal
with a well-defined symbolic dynamics, and suppose this signal is filtered. We asked, to what extent
is the chaotic symbolic dynamics affected by filtering? We focused on the topological entropy and the
bit-error rate, two quantities characterizing the symbolic dynamics. Theoretical considerations indi-
cated that the topological entropy is invariant under linear filtering, which we verified using numerical
computations and experiments with a chaotic electronic circuit. Our results suggested that in practical
situations, with reasonable care, the estimated topological entropy can be preserved and the bit-error
rate can be maintained at low values for a wide range of the filtering parameter.

e L. Zhu, Y.-C. Lai, F. Hoppensteadt, and E. M. Bollt, “Numerical and experimental investigation
of the effect of filtering on chaotic symbolic dynamics,” Chaos 13, 410-419 (2003).

3.2.5 Noise-induced chaos and scaling laws

We tecently obtained results concerning the transition to chaos in random dynamical systems. In
particular, situations were considered where a periodic attractor coexists with a nonattracting chaotic
saddle, which can be expected in any periodic window of a nonlinear dynamical system. Under noise, the
asymptotic attractor of the system can emulate chaotic behavior, as characterized by the appearance
of a positive Lyapunov exponent. Generic features of the transition include: (1) the noisy chaotic
attractor is necessarily nonhyperbolic as there are periodic orbits embedded in it with distinct numbers
of unstable directions (unstable dimension variability), and this nonhyperbolicity develops as soon as the
attractor becomes chaotic; (2) for systems described by differential equations, the unstable dimension
variability destroys the neutral direction of the flow in the sense that there is no longer a zero Lyapunov
exponent after the noisy attractor becomes chaotic; (3) the largest Lyapunov exponent becomes positive
from zero in a continuous manner, and its scaling with the variation of the noise amplitude is algebraic.
Formulas for the scaling exponent were derived in all dimensions. Numerical support using both low and
high-dimensional systems and experimental verification using chaotic electronic circuits were obtained.




e Z.Liu, Y.-C. Lai, L. Billings, and I. B. Schwartz, “Transition to chaos in continuous-time random
dynamical systems,” Physical Review Letters 88, 124101(1-4) (2002).

e B. Xy, Y.-C. Laj, L. Zhu, and Y. Do, “Experimental characterization of transition to chaos in the
presence of noise,” Physical Review Letters 90, 164101 (1-4) (2003).

o Y.-C. Lai, Z. Liu, L. Billings, and I. B. Schwartz, “Noise-induced unstable dimension variability
and transition to chaos in random dynamical systems,” Physical Review E 67, 026210(1-17) (2003).

3.2.6 Scaling law of statistical averages with noise in chaotic systems

A frequent task in computational and experimental sciences is to compute or measure statistical averages
of some physical observables. A fundamental question is whether these averages can be computed or
measured reliably. This is particularly relevant when the system under investigation exhibits chaos, for
which numerical trajectories are not always shadowable by true trajectories. Shadowability of statistical
averages has begun to be addressed. We recently identified a common situation in chaotic dynamics
where statistical averages change with noise. In particular, we found that for chaotic systems in periodic
windows, statistical averages typically scale algebraically with the noise amplitude. We derived formulas
for the scaling exponent in all dimensions, provided extensive numerical support, and also presented
experimental evidence to support the noisy scaling law using a chaotic electronic circuit. As periodic
windows are common in nonlinear systems, the implication can be quite intriguing. For instance, in
computations, if a different precision or a different computer is used, the computed values of statistical
average can be different. In a laboratory experiment, measurements performed under nonidentical
circumstances may yield different results.

¢ Y.-C. Lai, Z. Liu, G. Wei, and C.-H. Lai, “Shadowability of statistical averages in chaotic systems,”
Physical Review Letters 89, 184101 (2002). :

3.3 Objective 3: Signal enhancement using stochastic resonance for antijamming
3.3.1 Antijamming by stochastic resonance

An often encountered problem in many defense applications, such as communication and signal process-
- ing, is how to combat the influence of externally imposed, undesirable noise (jamming). A traditional
and natural approach is to devise schemes to block or to significantly reduce the noise. Often, such a
scheme involves sophisticated electronics, particularly in situations where the spectrum of the signal is
contained entirely within that of the noise (in-band noise). An alternative approach to this well de-
fined counter-jamming problem is by using the principle of stochastic resonance in nonlinear dynamical
systems, as suggested by Dr. Arje Nachman at AFOSR. Broadly speaking, stochastic resonance means
that certain performances of the system, such as the ability to detect periodic signals, can be enhanced
by the presence of noise and be made optimal at certain nonzero noise levels. This phenomenon is
rather counter-intuitive, but the key mechanism lies in the complex interplay between nonlinearity and
noise. ‘ ‘

We proposed a framework for antijamming by using stochastic resonance. The general philosophy is
to make use of noise to counter noise. In particular, we constructed a signal processing unit by utilizing
an array of excitable dynamical systems that exhibit stochastic resonance. Such a device can be simple
and be built at low cost. The input signal consists of a desirable signal and jamming. A modulating
noise signal is deliberately fed into the system. The system is so designed that at an optimal level
of modulating noise, the complex interaction between nonlinearity and stochasticity yields an output
signal with a much higher signal-to-noise ratio (SNR) than that of the input signal. -
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- We investigated the performance of the stochastic-resonance-based scheme of antijamming with
respect to periodic and aperiodic signals, and broad-band and narrow-band jamming as well.

e 7. Liu, Y.-C. Lai, and A. Nachman, “Enhancement of noisy signals by stochastic resonance,”
Physics Letters A 297, 75-80 (2002).

e 7. Liu, Y.-C. Lai, and A. Nachman, “Enhancement of detectability of noisy signals by stochastic
resonance in arrays,” International Journal of Bifurcation and Chaos, accepted.

o Y-C. Lai, Z. Liu, and A. Nachman, “Aperiodic stochastic resonance and phase synchronization,”
submitted to Physics Letters A.

e Y.-C. Lai, Z. Liu, A. Nachman, and L. Zhu, “Suppression of jamming in excitable systems by
aperiodic stochastic resonance,” submitted to International Journal of Bifurcation and Chaos.

3.3.2 Coherence resonance in coupled chaotic systems

" Coherence resonance is a recently discovered phenomenon in which the degree of temporal regularity of
the output of a nonlinear system in a noisy environment increases as the noise amplitude is increased
and reaches maximum at an optimal noise level. Coherence resonance is distinct from the more common
phenomenon of stochastic resonace in that the former concerns the timing while the latter deals with
the amplitude of the output signal from a nonlinear system. In practical terms, if the performance of a
detection scheme relies on the timing of a seemingly random output, then in the presence of jamming,
applying certain intrinsic noise may in fact increase the regularity of the timing and consequently,
enhance the performance.

We investigated the phenomenon of coherence resonace in the context of coupled nonlinear oscil-
lators, which are commonly utilized in many electronic devices. We worked out a physical theory
based on analyzing the Fokker-Planck equation and provided numerical evidence for the occurrence and
quantification of coherence resonance in such systems.

e 7Z.Liuand Y.-C. Lai, “Coherence resonance in éoupled chaotic oscillators,” Physical Review Letters
86, 4737-4740 (2001).

" @ Y.-C. Lai and Z. Liu, “Noise-enhanced temporal regularity in coupled chaotic oscillators,” Physical
Review E 64, 066202(1-9) (2001).

3.3.3 Coherence resonance in non-bursting chaotic systems

Most existing works on coherence resonance had addressed excitable dynamical systems that typically
~ generate bursting time series. While many nonlinear dynamical systems, nonchaotic or chaotic, can
indeed exhibit bursting behaviors, many others do not. A question had been whether coherence res-
onance can occur in non-bursting dynamical systems. Our interest was in chaotic systems. Suppose
there is a chaotic system that generates irregular but non-bursting signals, and suppose in a specific
application, the temporal regularity of the signal is of interest. Would external noise help improve
the temporal regularity of this signal? We argued theoretically that for a typical non-bursting chaotic
system with many possible intrinsic time scales, noise can introduce a new time scale, or the external
time scale. When the noise amplitude reaches a proper value, a resonant state can be reached in the
sense that the external time scale matches one of the dominant internal time scales, leading possibly to
coherence resonance. We obtained experimental evidence with a chaotic electronic circuit, the Chua’s
circuit. The implication is that noise can be beneficial, not only for bursting chaotic systems but also
for non-bursting ones, so coherence resonance is expected to be ubiquitous in chaotic systems.

B
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e L. Zhy, Y.-C. Lai, Z. Liu, and A. Raghu, “Can noise make non-bursting chaotic systems more
regular?” Physical Review E (Rapid Communications) 66, 015204(1-4) (2002).

3.3.4 Noise-induced enhancement of chemical reactions in chaotic flows

The interplay between noise and nonlinear dynamics had long been a topic of tremendous interest
in statistical physics. While noise can be detrimental in many situations, it can also be beneficial
through, for example, the mechanisms of stochastic and coherence resonances. Recently, a new area of
interdisciplinary science emerged: active processes in nonlinear flows. Such processes can be chemical
or biological, and are believed to be relevant to a large number of important problems in a variety of
areas. Our work focused on the role of noise in active nonlinear processes. In particular, motivated by
the problem of ozone production in atmospheres of urban areas, we investigated how noise influences a
general type of chemical reaction, supported on a chaotic flow. To be as realistic as possible, we took
into consideration important physical effects such as particle inertia and finite size. Our finding was
that noise can enhance the rate of chemical reaction, in a manner similar to that of stochastic resonance.
We provided numerical results and also a physical theory, suggesting that at a fundamental level, the
resonant behavior is due to the interaction between noise and nonlinearity of the particle (Lagrangian)
dynamics.

e Z. Liu, Y.-C. Lai, and J. M. Lopez, “Noise-induced enhancement of chemical reactions in chaotic
flows,” Chaos 12, 417-425 (2002).
This work was featured by the American Institute of Physics in AIP News. It was also named an
“outstanding paper” in the journal CHAOS in 2002 by the AIP Annual Report.

3.4 Objective 4: Dynamics of semiconductor lasers and communicating with chaos

3.4.1 Chaotic transitions and low-frequency fluctuations in external-cavity semiconductor
lasers '

Semiconductor lasers offer many advantages not only due to their compact sizes but also because of their
tremendous applications in various fields, particularly in optical data recording and optical-fiber com-
munication. It has been known that the performances of these lasers, such as enhancement of the single
longitudinal mode operation, spectral line narrowing, improved frequency stability, wavelength tunabil-
ity etc., can be enhanced dramatically by a small amount of optical feedback. In applications where
these properties are desirable, therefore, introducing optical feedback artificially by using additional op-
tical elements can be quite advantageous. On the other hand, optical feedback is inevitable in virtually
all realistic applications, which can be due to, for instance, reflections from fiber facets when radiation is -
coupled into a fiber. Semiconductor lasers subject to optical feedback are called external-cavity lasers.
From the standpoint of dynamics, optical feedbacks introduce a time delay to the reinjected field which
in turn, creates an infinite number of degrees of freedom, making the phase-space dimension of the
underlying dynamical system infinite. This makes the analysis and understanding of external-cavity
semiconductor lasers an extremely challenging problem.

While optical feedback at low levels can indeed be advantageous, the performances of semiconductor
lasers can be degraded significantly when the feedback is at moderate or high levels. In particular, at
high feedback levels, a semiconductor laser can enter the so-called coherence collapse regime where the
optical linewidth increases drastically. At moderate feedback levels, when the pumping current is close
to the solitary threshold, the laser intensity can exhibit sudden dropouts at irregular times, followed
by a slow and gradual recovery after each dropout. The average frequency of the dropouts is typically
at the MHz-level, which is several orders of magnitude smaller than the frequency of the solitary laser
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relaxation oscillation. This dropout phenomenon is thus called low-frequency fluctuations (LFFs), which
poses a serious difficulty in many applications where a sustained laser power is desirable.

Semiconductor lasers are of tremendous value to a large variety of applications that are important
for the Air Force missions. Suggested by Drs. A. Gavrielides and V. Kovanis from the Air Force
Research Laboratory at the Kirtland Air Force Base, we studied chaotic transitions and low-frequency
fluctuations in external-cavity semiconductor lasers by numerical integration of the Lang-Kobayashi
equations. Our findings were: (1) At moderate feedback levels, the system evolves around the remains
of attractors that were first created in place of a cascade of external cavity modes and then merged
together in a sequence of chaotic transitions; (2) Depending on the feedback strength, the highest gain
mode is either unattainable by the system or can be reached after a chaotic transient. The implication
is that if the highest gain mode is unreachable, then the output of the laser exhibits LFFs. If, however,
the highest gain mode is reachable, then LLF's are only a transient as the laser can operate in a stable,
high gain mode despite the presence of delayed optical feedback. We provided explanations for these
observations from the prespective of chaos theory.

e R. L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Dynamical origin of low-frequency
fluctuations in external cavity semiconductor lasers,” Physics Letters A 267, 350-356 (2000).

e R L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Chaotic transitions and low-
frequency fluctuations in semiconductor lasers with optical feedback,” Physica D 145, 130-143
(2000).

3.4.2 Regular dynamics associated with low-frequency fluctuations in external-cavity
semiconductor lasers

It is commonly believed that the dynamics responsible for low-frequency luctuations (LFFs) in external
cavity semiconductor lasers is stochastic or chaotic. A common approach to address the origin of
LFFs had been to investigate the dynamical behavior of, and the interaction among, various external
cavity modes (ECMs) in the Lang-Kobayashi (LK) paradigm. The ECM framework had been, however,
inadequate in explaining many features of the LFFs. We proposed a framework for understanding LFFs
based on a different set of fundamental solutions of the LK equations. In particular, we presented strong
numerical evidence and a heuristic argument indicating that the underlying “backbone” dynamics of
LFFs can be regular (quasiperiodic or periodic), which is characterized by a sequence of time-locked
pulses and can actually be observed when: (1) the feedback level is moderate, (2) pumping current is
below solitary threshold, and (3) the linewidth enhancement factor is relatively large. These results
had implications in the understanding and applications of external cavity semiconductor lasers. For

~ instance, one might be interested in applying control to eliminate LFFs. Knowing that the underlying

dynamics has a regular backbone despite irregularity of LFFs, one can attempt strategies that are
different from the commonly utilized approach of controlling chaos.

e R. L. Davidchack, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Regular dynamics of low-frequency
fluctuations in semiconductor lasers with optical feedback,” Physical Review E 63, 056206(1-6)
(2001).

3.4.3 A dynamical-system approach to low-frequency fluctuations in external-cavity semi-
conductor lasers

We investigated the dynamical origin of LFFs by utilizing a simplified, three-dimensional model derived
from the infinite- dimensional Lang-Kobayashi (LK) equations. The simplified model preserves the
dynamical properties of the external-cavity modes (ECMs) and antimodes which play a fundamental
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role in the generation of LFFs. This model yields a clear picture of the dynamical origin of the LFFs. In
particular, we showed that, in the absence of noise, LFFs are a consequence of the dynamical interactions
among different ECMs and antimodes. When a small amount of noise is present, LFFs result from an
intermittent switching of trajectories among different coexisting attractors in the phase space. The
presence of double peaks in the distribution of power dropout times, which had been observed in
experiments, was explained, and a scaling relation was obtained between the average switching time
and the noise strength.

e A. Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Low-frequency fluctuations in external-
cavity semiconductor lasers: understanding based on a reduced Lang-Kobayashi model,” Journal
of Optics B: Quantum and Semiclassical Optics 3, 242-250 (2001).

3.4.4 Controlling low-frequency fluctuations in external-cavity semiconductor lasers

We proposed a time-delay coupling scheme to modulate the amplitude of external-cavity semiconductor
lasers so as to control the LFFs. In particular, we demonstrated, by making use of the principle of
amplitude death, that in a suitable coupling scheme, semiconductor lasers can be harnessed in such
a desirable way that power dropouts can be eliminated completely. The scheme provided a possible
solution to controlling LFFs in external-cavity semiconductor lasers, which may pave the way for more
desirable and broader applications of these lasers. :

We also discovered the phenomenon of multiple coexisting attractors in coupled external-cavity
semiconductor lasers and studied the complicated structure of basins of attraction of these attractors.

e A. Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Complicated basins in coupled external-
cavity semiconductor lasers,” Physics Letters A 314, 44-50 (2003).

e A.Prasad, Y.-C. Lai, A. Gavrielides, and V. Kovanis, “Amplitude modulation in coupled external-
cavity semiconductor lasers,” Physics Letters A, in press.

3.4.5 Communicating with chaos using two-dimensional symbolic dynamics

Nonlinear digital communication (communicating with chaos) had become a topic of interest to re-
searchers in defense laboratories. We explored various theoretical and computational issues in nonlinear
digital communication. Existing works illustrating the principle of communicating with chaos all had
utilized chaotic systems exhibiting one-dimensional dynamics. We investigated the possibility of com-
municating with chaos by using more realistic dynamical systems described by three-dimensional flows.
The major difficulty was how to specify a generating partition so that a good symbolic dynamics can
be defined. We proposed a solution to use hyperbolic chaotic saddles embedded in the chaotic attractor
for message encoding. Potentially, our results implied that a large variety of practically usable chaotic
systems can be utilized as effective information sources.

- Y.-C. Lai, E. Bollt, and C. Grebogi, “Communicating with chaos using two-dimensional symbolic
dynamics,” Physics Letters A 255, 75-81 (1999).

3.4.6 Communicating with transient chaos

We explored communicating with transient chaos naturally arising in nonlinear systems. Dynamically,
transient chaos is caused by nonattracting chaotic saddles. We argued that there are two major advan-
tages when trajectories on chaotic saddles are exploited for communication: (1) the channel capacity
can in general be large; and (2) the influence of channel noise can be reduced. We devised a control
scheme for realizing communication and studied practical examples of encoding digital messages.
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e Y.-C. Lai “Encoding digital information using transient chaos,” International Journal of Bifurca-
tion and Chaos 10, 787-795 (2000).

3.4.7 Estimating generating partitions of chaotic systems by unstable periodic orbits

An outstanding problem in chaotic dynamics was to specify generating partitions for symbolic dynam-

' ics in dimensions larger than one. Being of fundamental importance to the study of chaotic dynamics,

finding generating partitions is also critical for important technological applications such as communi-
cating with chaos. It had been known that the infinite number of unstable periodic orbits embedded
in the chaotic invariant set provides sufficient information for estimating the generation partition. We
proposed a general, dimension-independent, and efficient approach for this task based on optimizing a
set of proximity functions defined with respect to periodic orbits. Our algorithm allowed us to obtain,
for the first time, generating partitions for chaotic systems such as the Ikeda-Hammel-Jones-Moloney
map.

e R. L. Davidchack, Y.-C. Lai, E. Bollt, and M. Dhamala, “Estimating the generating partition of
chaotic systems by unstable periodic orbits,” Physical Review E 61, 1353-1356 (2000).

3.4.8 Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series

Symbolic dynamics is a convenient tool to describe complicated time evolution of chaotic dynamical
systems, and it provides a natural link between chaotic dynamics and information theory, on which
the idea of utilizing chaotic systems to encode digital information, or communicating with chaos, was
based. A good symbolic dynamical representation requires a one-to-one correspondence to the phase-
space dynamics; the partition that defines distinct symbols has to be generating. On the experimental
side, there was an increasing interest in chaotic symbolic dynamics as well. A common practice had
been to apply the threshold-crossing method, i.e., to define a rather arbitrary partition, so that distinct
symbols can be defined from measured time series. There are two reasons for the popularity of the
threshold-crossing method: (1) it is extremely difficult to locate the generating partition from chaotic
data, and (2) threshold-crossing is a physically intuitive and natural idea. It is thus of paramount

~ interest, from both the theoretical and experimental points of view, to understand how misplaced

partitions affect the goodness of the symbolic dynamics such as the amount of information that can be
extracted from the data.

We investigated the consequence of misplaced partitions in chaotic systems. Specifically, we ad-
dressed how the topological entropy, perhaps one of the most important dynamical invariants that
one intends to compute from symbolic dynamics, behaves as a parameter characterizing the amount
of misplaced partition is changed. We found the topological entropy as a function of the parameter
to be devil’s staircase-like, but surprisingly nonmonotone. We established our results by numerical
computations for one- and two-dimensional maps, and by a rigorous analysis for the tent map which
is a good topological model for one-dimensional one-hump maps. The main implication of our results
was that the threshold-crossing technique typically yields misleading conclusions about the dynamics
generating the data, and therefore one should be extremely cautious when attempting to understand
the underlying system from a misrepresented symbolic dynamics.

e E. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “Validity of threshold-crossing analysis of
symbolic dynamics from chaotic time series,” Physical Review Letters 85, 3524-3527 (2000).

e E. Bollt, T. Stanford, Y.-C. Lai, and K. Zyczkowski, “What symbolic dynamics do we get with
a misplaced partition? - On the validity of threshold crossings analysis of chaotic time series,”
Physica D 154, 259-286 (2001).
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3.5 Achievements on related research
3.5.1 Modeling of chaotic systems

Scientists and engineers rely heavily on mathematical models to understand natural phenomena. Usu-
ally, for a particular process, data from laboratory experiments or from observations are analyzed and,
together with physical laws, a mathematical model of the process is formulated. In fact, this is done
for a large variety of processes in fields such as physics, chemistry, biology, ecology, and engineering.
The models are then used to understand the particular process, to make predictions, and to control its
dynamics. There are two important classes of models. The first class is the deterministic dynamical
systems and they evolve the relevant physical variables in time according to a set of prescribed rules.
The second one is stochastic models, models which involve some kind of random process and, conse-
quently, for these models, only statistical averages regarding properties of the system can be obtained
from the model. The conventional wisdom about statistical models is that they deal with situations
where random noise is influential or systems that involve a large number of degrees of freedom such as
those arising in statistical physics.

We discovered a class of deterministic models for chaotic systems which, in spite of being determinis-
tic, yield only statistically relevant information about their dynamical variables. In particular, systems
of coupled chaotic oscillators occur in many situations of physical and biological interest. They can also
come from discretization of nonlinear partial differential equations. We argued that severe modeling
difficulties are possible in the sense that no modeling is able to produce reasonably long solutions that
are realized by nature or by the original nonlinear differential equations. We obtained theoretical and
numerical evidence that this obstruction to modeling may occur when a coupling, however small, is
present. :

- The implication of our result is as follows. Say one constructs a natural system of coupled chaotic
oscillators in a laboratory, and one measures a trajectory. Then no trajectory of reasonable length from
the mathematical model of the natural system is close to the measured trajectory. The difficulty to
model this natural process is a consequence of the inexactitude of the model given by the inevitable
random disturbances and imperfections of the model such as various approximations used in the model-
building process. If the model is an approximation to the natural process, as indeed it is, due to
imperfections of the natural system, no model can produce trajectories of reasonable length that are
close to trajectories of the actual system of coupled oscillators. Thus, one should exercise some care
when studying and interpreting results from models of coupled chaotic oscillators. Often, the only
long-term meaningful results one can trust are the statistical invariants obtained by simulating a large
number of trajectories of the model. In laboratory experiments involving coupled chaotic oscillators,
it might only make sense to work directly with measured time series instead of a mathematical model
when attempting to understand the long term behavior of the system, even if the model is built upon
physical laws and is considered to be reasonable.

e Y.-C. Lai and C. Grebogi, “Modeling of coupled chaotic oscillators,” Physical Review Letters 82,
4803-4806 (1999).

® Y.-C. Lai, C. Grebogi, and J. Kurths, “Modeling of deterministic chaotic systems,” Physical
Review E 59, 2907-2910 (1999).

e Y.-C. Lai, D. Lerner, K. Williams, and C. Grebogi, “Unstable dimension variability in coupled
chaotic oscillators,” Physical Review E 60, 5445-5454 (1999).

o Y.-C. Lai and C. Grebogi, “Obstruction to deterministic modeling of chaotic systems with invari-
ant manifold,” International Journal of Bifurcation and Chaos 10, 683-693 (2000).
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e Y. Do, Y.-C. Lai, Z. Liu, and E. J. Kostelich, “Universal and nonuniversal scaling in shadowing
dynamics of nonhyperbolic chaotic systems with unstable dimension variability,” Physical Review
E (Rapid Communications) 67, 035202 (1-4) (2003).

3.5.2 Towards complete detection of unstable periodic orbits in chaotic systems

An outstanding problem in chaotic dynamics had been how to compute complete sets of unstable
periodic orbits (UPOs), where are perhaps the most fundamental building blocks of invariant sets in

“chaotic dynamical systems because, many measureable quantities of physical interest can be related to

the dynamical properties of the set of infinite number of UPOs embedded in the chaotic set. We made
a progress in this direction. In particular, we proposed an algorithm for detecting UPOs in general
chaotic systems, which is many orders of magnitude more efficient than ALL existing methods. We
were able to argue, rigorously for one-dimensional chaotic maps, that our algorithm is indeed capable
of yielding ALL UPOs up to periods that are limited by the computer round-off. In high dimensions,
we had convincing numerical evidence for complete detection of UPOs by our algorithm.

 R. L. Davidchack and Y .-C. Lai, “An efficient algorithm for detecting unstable periodic orbits in
chaotic systems,” Physical Review E 60, 6172-6175 (1999).

e R. L. Davidchack, Y.-C. Lai, A. Klebanoff, and E. M. Bollt, “Toward complete detection of
unstable periodic orbits in' chaotic systems,” Physics Letters A 287, 99-104 (2001).

3.5.3 Riddling in chaotic systems

Most existing works on riddling had assumed that the underlying dynamical system possesses an in-
variant subspace that usually results from a symmetry. In realistic applications of chaotic systems,
however, there exists no perfect symmetry. We investigated the consequences of symmetry-breaking on
riddling. In particular, we considered smooth deterministic perturbations that destroy the existence of
invariant subspace and identify, as a symmetry-breaking parameter is increased from zero, two distinct
bifurcations. In the first case, the chaotic attractor in the invariant subspace is transversely stable so
that it basin is riddled. We found that a bifurcation from riddled to fractal basins can occur in the sense
that an arbitrarily small amount of symmetry-breaking can replace the riddled basin by fractal ones.
We called it a catastrophe of riddling. In the second case where the chaotic attractor in the invariant
subspace is transversely unstable so that there is no riddling in the unperturbed system, the presence of
a symmetry-breaking, no matter how small, can immediately create fractal basins in the vicinity of the
original invariant subspace. This is a smooth-fractal basin boundary metamorphosis. We analyzed the
dynamical mechanisms for both catastrophes of riddling and basin boundary metamorphoses, derived
scaling laws to characterize the fractal basins induced by symmetry-breaking, and provided numerical
confirmations. The main implication of our results is that, while riddling is robust against perturbations
that preserve the system symmetry, riddled basins of chaotic attractors in the invariant subspace, on
which most existing works were focused, are structurally unstable against symmetry-breaking pertur-
bations. A striking consequence is that riddling is not physically observable, in contrast to previous
claims. What can be observed in laboratory experiments is fractal basins that appear like riddled ones.

e Y.-C. Lai and C. Grebogi, “Riddling of chaotic sets in periodic windows,” Physical Review Letters
83, 2926-2929 (1999).

e Y.-C. Lai, “Catastrophe of riddling,” Physical Review E (Rapid Communications) 62, R4505-
R4508 (2000).

e Y.-C. Lai, “Pseudo-riddling in chaotic systems,” Physica D 150, 1-13 (2001).
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e Y.-C. Lai and V. Andrade, “Catastrophic bifurcation from riddled to fractal basins,” Physical
Review E 64, 056228(1-16) (2001).

3.5.4 Other related research on nonlinear d&namics
We also published on the following topics:

e Transition to high-dimensional chaos;

e Analytic signal representation of chaotic time series;

e Complexity and unstable periodic orbits in chaotic systems;

e Controlling transient chaos in deterministic flows;

e Natural measure and unstable periodic orbits of transient chaos;

o Characterization of bifurcation to high-dimensional chaos by unstable periodic orbits;
e Detection of unstable periodic orbits from experimental transient chaotic time series;

e Scaling analysis of crisis in chaotic systems;

e Synchronization in complex networks.

4 Personnel Supported and Theses Supervised by PI
4.1 Personnel Supported A

The following people received salary from the PECASE in various time periods.

e Faculty (partial summer salary): Ying-Cheng Lai (PI), Professor of Mathematics, Professor
of Electrical Engineering, Affiliated Professor of Physics

¢ Post-Doctoral Fellows (full- or part-time appointments)
1. Ruslan Davidchack

2. Zong-Hua Liu

3. Adilson E. Motter

4. Alessandro de Moura

5. Takashi Nishikawa

6. Awadhesh Prasad

e Graduate Students (part-time appointments)

1. Victor Andrade, University of Kansas
2. Mukeshwar Dhamala, University of Kansas

3. Younghae Do, Arizona State University
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4.2

Mary Ann Harrison, University of Kansas
Arvind Raghu, Arizona State University
Lonnie Sauter, University of Kansas
Saeed Taherion, University of Kansas

Bin Xu, Arizona State University

Ligiang Zhu, Arizona State University

Other: Thomas Erneux, Air Force Scientific Consultant.

Theses Supervised by PI
Ph.D. Theses

Tolga Yalcinkaya, Physics, University of Kansas, 1998. Dissertation: Phase characterization and
controlling chaos in deterministic flows. Immediate job after Ph.D. - Scientist, Advanced Research
Division, Sprint.

Saeed Taherion, Physics, University of Kansas, 1999. Dissertation: Ezperimental and numerical
studies of synchronization in nonlinear chaotic oscillators and effect of filtering on topological en-
tropy. Immediate job after Ph.D. - Post-Doctoral Fellow, Department of Electrical and Computer
Engineering, University of Kansas.

Mukeshwar Dhamala, Physics, University of Kansas, 2000. Dissertation: Transient chaos. Imme-

‘diate job after Ph.D. - Post-Doctoral Fellow, Georgia Institute of Technology.

Lomnnie Sauter, Mathematics, University of Kansas, 2001. Dissertation: Generalized synchronism,
low-dimensional chaos, and phase synchronization in coupled chaotic systems. Immediate job
after Ph.D. - Senior Network Engineer, Sprint.

Mary Ann Harrison, Physics, University of Kansas, 2001. Dissertation (with honor): On-off
intermittency and patterning in spatially extended dynamical systems. Immediate job after Ph.D
- Research Scientist, Flint Hill Scientific, Kansas.

Victor Andrade, Physics, University of Kansas, 2002. Dissertation: Superpersistent chaotic tran-
sient and bifurcation from riddled to fractal basins. Immediate job after Ph.D - Post-Doctoral
Fellow, Department of Physics and Astronomy, University of Kansas.

Master Theses

Mukeshwar Dhamala, Physics, University of Kansas, 1999. Thesis: Controlling transient chaos in
deterministic flows with applications to electrical power systems and ecology.

Mary Ann Harrison, Physics, University of Kansas, 1999. Thesis: Transition to high-dimensional

~ chaos. -

Arvind Raghu, Electrical Engineering, Arizona State University, 2001. Thesis: Double coherence
resonance in chaotic systems and experimental observation.

Bin Xu, Electrical Engineering, Arizona State University, 2003. Thesis: Shadowing of statistical
averages in chaotic systems.
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. Y.-C. Lai, “Analytic signals and transition to chaos in deterministic flows,” Physical Review E

(Rapid Communications) 58, R6911-R6914 (1998).

M. Dhamala and Y.-C. Lai, “Controlling transient chaos in deterministic flows with applications
to electrical power systems and ecology,” Physical Review E 59, 1646-1655 (1999).

Y.-C. Lai, C. Grebogi, and J. Kurths, “Modeling of deterministic chaotic systems,” Physical
Review E 59, 2907-2910 (1999).

M. Harrison and Y.-C. Lai, “A route to high-dimensional chaos,” Physical Review E (Rapid
Communications) 59, R3799-R3802 (1999).

Y.-C. Lai, “Unstable dimension variability and complexity in chaotic systems,” Physical Review
E (Rapid Communications) 59, R3807-R3810 (1999).

. Y-C. Lai, K. Zyczkowski, and C. Grebogi, “Universal behavior in the parameter evolution of

chaotic saddles,” Physical Review E 59, 5261-5265 (1999).

. Y.-C. Laij, E. Bollt, and C. Grebogi, “Communicating with chaos using two-dimensional symbolic

dynamics,” Physics Letters A 255, 75-81 (1999).

Y.-C. Lai and C. Grebogi, “Modeling of coupled chaotic oscillators,” Physical Review Letters 82,
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1.

Books/Book Chapters

C. Grebogi, Y .-C. Lai, and S. Hayes, “Control and applications of chaos,” in Visions of Nonlinear
Science in the 21st Century, edited by J. L. Huertas, W.-K. Chen, and R, N. Madan (World
Scientific, 1999). ‘

Y .-C. Lai, “Chaotic dynamics: introduction and recent developments,” pp. 295-306 in Recent Ad-
vances & Cross-Century Outlooks in Physics, edited by P. Chen and C.-Y. Wong (World Scientific,
2000).

Y .-C. Lai, V. Andrade, R. L. Davidchack, and S. Taherion, “Experimental manifestations of phase
and lag synchronizations in coupled chaotic systems,” in Proceeding of the 5th Experimental Chaos
Conference, edited by L. Pecora et al. (World Scientific, 2000).

Y.-C. Lai and C. Grebogi, “Necessity of statistical modeling of deterministic chaotic systems,”
pp. 531-542 in Statistical Physics (Third Tohwa University International Conference ), edited by
M. Tokuyama and H. E. Stanley (American Institute of Physics, 2000).

6 Interactions/Transitions

The PI provided scientific consultation to Dr. A. Gavrielides’ and Dr. M. Harrison’s groups at AFRL
at Kirtland Air Force Base, and to Dr. D. H. Hughes at AFRL in Rome, NY.

During the project period, the PI presented 50 invited lectures, seminars, and colloquia at various
conferences and universities, as follows.

e Invited Talks at Conferences and Symposia (one-hour long unless otherwise specified)

1.

“Modeling of coupled chaotic oscillators,” International Workshop on Lattice Dynamics, National
Chiao Tong University, Taiwan, June 27, 1998.

“Scaling of encounter probability with unstable periodic orbits in time series,” International Work-
shop on Experimental Detection of Periodic Orbits, George Mason University, July 11, 1998.

“Modeling of coupled chaotic oscillators,” Nonlinear Optics Workshop, University of Arizona,
September 24, 1998. (30 minutes)

Short course on chaotic dynamics: (1) Controlling chaos; (2) Communicating with chaos; (3)
Chaotic scattering; (4) Hamiltonian chaos and quantum chaos; (5) Crises; (6) Quasiperiodic
systems; (7) Riddling; (8) Effect of noise on chaotic dynamics; (9) Phase dynamics of chaos;
(10) Modeling of chaotic systems; (11) Unstable periodic orbit theory; and (12) Chaotic time
series analysis, National Chung Cheng University, Taiwan, November 27 - December 8, 1998 (12
hours)

“Transition to strange nonchaotic and chaotic attractors,” International Workshop on Beyond
Quasiperiodicity, Complez Dynamics and Structure, Dresden, Germany, January 11, 1999.

“Communicating with chaos,” MURI Workshop on Communicating with Chaos, University of
California, San Diego, January 25, 1999. (90 minutes)

“Chaotic scattering,” First Overseas Chinese Physics Association Conference on Recent Advances
and Cross-Century Outlooks in Physics: Interplay between Theory and Fxperiment, Atlanta,
March 19, 1999.
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10.

11.

“Scaling law for detecting unstable periodic orbits from transient chaos,” Symposium on Frontiers
in Nonlinear Dynamics and Neurodynamics, Georgia Institute of Technology, March 20, 1999.

Fifth STAM Conference on Dynamical Systems, Snowbird, May 21-15, 1999, two invited minisym-
posium talks: (1) “Modeling-of coupled chaotic systems” and (2) “Communicating with chaos
using two-dimensional symbolic dynamics.”

“Experimental study of phase and lag synchronizations in coupled chaotic systems,” the Fifth
Experimental Chaos Conference, Orlando, Florida, June 29, 1999. (80 minutes)

“Estimating generating symbolic partitions by unstable periodic orbits,” Nonlinear Optics Work-

- shop, University of Arizona, September 17, 1999. (30 minutes)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

“Riddling and on-off intermittency,” International School on Space Time Chaos: Characterization,
Control, and Synchronization, Pamplona, Spain, June 23, 2000. (Two hours)

SIAM Pacific Rim Dynamical Systems Conference, Maui, Hawaii, August 10-15, 2000, three in-
vited minisymposium talks: (1) “Computing the correlation dimension from time series in weakly
coupled spatiotemporal chaotic systems,” (2) “Intermittency in chaotic rotations,” and (3) “Effect
of noise on phase synchronizatin and experimental observation of lag synchronization in coupled

‘chaotic systems.”

“Chaotic scattering and the dynamics of optical microlasing cavities,” AFOSR Nonlinear Optics
Workshop, University of Arizona, Tucson, September 22, 2000. (30 minutes)

“Esfimating generating symbolic partition in chaotic systems by unstable periodic orbits,” South-
west Dynamical Systems Conference, University of Southern California, November 19, 2000. (80
minutes) : :

“Superpersistent chaotic transients,” International Workshop on Physics of Information and Syn-
chronization in Stochastic Dynamics, Max-Planck Institute for Physics of Complex Systems, Dres-
den, Germany, April 2, 2001. (30 minutes)

Sixth SIAM Conference on Dynamical Systems, Snowbird, Utah, May 19-24, 2001, three invited
minisymposium talks: (1) “Catastrophe of riddling and implications to shadowing,” (2) “Su-
perpersistent chaotic transients: theory and experiments,” and (3) “Low-dimensional chaos in
high-dimensional dynamical systems: how does it occur?”

“Noise-induced enhancement of chemical reactions in chaotic flows,” International Workshop on
Active Chaotic Flows, Los Alamos National Laboratory, May 29, 2001.

“Effect of filtering on information-carrying capacity of chaotic signals,” International Workshop
on Control, Communication, and Synchronization of Chaotic Systems, Max-Planck Institute for
Physics of Complex Systems, Dresden, Germany, October 16, 2001. (30 minutes)

“Growing and small-world networks,” Second Asian/Pacific Dynamics Days Conference, Hangzhou,
China, August 9, 2002.

“Stochastic resonance induced by coherence resonance: an example in active chaotic flows,” In-
ternational Workshop on Chemical and Biological Activities in Flows, Max-Planck Institute for
Physics of Complex Systems, Dresden, Germany, September 25, 2002.

“Noise-induced chaos in electronic circuits,” AFOSR/MURI Chaos Meeting, University of Mary-
land at College Park, April 25, 2003.
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23.

24.

25.

“Structure and dynamics of complex networks,” Networks - Structure, Dynamics, and Function,
Los Alamos National Laboratory Center for Nonlinear Studies 23rd Annual Conference, Santa Fe,
May 12, 2003. (30 minutes)

SIAM Conference on Dynamical Systems, Snowbird, Utah, May 26-31, 2003, two invited minisym-
posium talks: (1) “Coherence resonance in chaotic systems,” and (2) “Shadowing of statistical

~ averages in chaotic systems.”

“Complex Networks,” AFOSR Software & Systems and Fusion Annual Workshop, Syracuse, June
5, 2003. (15 minutes)

- o Invited Colloquia and Seminars at Universities

26.

27.

28.

29,

30.

31.

32.

“Communicating with chaos,” Colloquium, Department of Physics, University of Missouri at
Kansas City, October 2, 1998.

“Transient chaos,” Colloquium, Department of Mathematics, Arizona State University, April 29,
1999.

“Modeling and complexity of coupled chaotic systems,” Colloquium, Department of Electrical
Engineering, Arizona State University, April 30, 1999.

“Abrupt bifurcation to chaotic scattering,” Nonlinear Dynamics Seminar, Department of Mathe-
matics, Arizona State University, January 28, 2000.

“Chaotic scattering,” Condensed Matter Physics Seminar, Department of Physics, Arizona State
University, February 18, 2000.

“Chaotic scattering,” Colloguium, Department of Mathematics, U.S. Naval Academy, October 13,
2000. :

“Unstable periodic orbits and generating partitions in chaotic systems,” Colloquium, Krasnow

- Institute for Advanced Studies, George Mason University, December 8, 2000.

33,
34,
35,
36.
37.
38.

39.

“Riddling in chaotic systems,” Joint Colloquium, Departments of Physics and Computational
Science, National University of Singapore, August 22, 2001.

“Riddling, superpersistent chaotic transients, and small worlds,” Colloquium, Whiting School of
Engineering, Johns Hopkins University, October 29, 2001.

“Noise and active processes in chaotic flows,” Seminar, Department of Computational Science,
National University of Singapore, November 28, 2001.

“Transition to chaos in continuous-time random dynamical systems,” Seminar, Department of
Computational Science, National University of Singapore, December 5, 2001. '

“Growing and small-world networks,” Seminar, Department of Physics, Beijing Normal University,
China, July 29, 2002.

“Chaotic scattering in open Hamiltonian systems and applications,” Seminar, Department of
Mathematics, Jilin University, China, August 1, 2002.

“Growing and small-world networks,” Seminar, Department of Physics, Jilin University, China,
August 2, 2002.

27




40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

BEST AVAILABLE COPY

“Transition to chaos in random dynamical systems,” Seminar, Department of Mathematics, Nan-
jing University, China, August 5, 2002.

“Shadowability of statistical averages in chaotic systems,” Seminar, Center for Nonlinear Dynam-
ics, Georgia Institute of Technology, November 11, 2002.

“Small-world and growing networks,” Seminar, National Center for Theoretical Sciences, Taiwan,
November 21, 2002.

“Transition to chaos in random dynamical systems,” Seminar, National Center for Theoretical
Sciences, Taiwan, November 21, 2002.

“Introduction to growing networks,” Particle Physics Seminar, Department of Physics, National
Tsing Hua University, Taiwan, November 25, 2002.

“Superpersistent chaotic transients and experimental verification,” Colloquium, Department of
Applied Mathematics, National Chiao Tung University, Taiwan, November 26, 2002.

“Coherence resonance in chaotic systems,” Condensed Matter Physics Seminar, Department of
Physics, National Tsing Hua University, Taiwan, November 26, 2002.

“Coherence resonance in chaotic systems,” Seminar, National Center for Theoretical Sciences,
Taiwan, November 28, 2002.

“Chaotic scattering in open Hamiltonian systems and applications,” Seminar, National Center for
Theoretical Sciences, Taiwan, November 28, 2002.

“Can statistical averages of chaotic systems be computed or measured reliably?” Colloquium,
Department of Physics, National University of Singapore, March 20, 2003.

“Superpersistent chaotic transients,” Nonlinear Dynamics Seminar, Department of Physics and
Tamesek Laboratory, National University of Singapore, March 21, 2003.

7 Honors

1.
2.

This award (1997 Air Force PECASE).

In November 1999, The PI was elected as a Fellow of the American Physical Society with the
citation For his many contributions to the fundamentals of nonlinear dynamics and chaos.
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